

# Acute Hemodialysis Prescription

# Case: Acute Hemodialysis

- اقای 50 ساله بدنبال مولتیپل تروما و پارگی طحال و خونریزی داخل شکمی با تابلوی شوک هیپوولمیک به اتاق عمل برده شده و اسپلنکتومی میشود و 4 واحد پک سل و 3 لیتر سرم نرمال سالین دریافت کرده است. آزمایشات روز اول کراتینین 1و هموگلوبین 6و پتاسیم 4 داشته و سایر ازمایشات نرمال است روز دوم پس از عمل الیگوری شده و کراتینین 2و پتاسیم 5 شده است. روز چهارم پس از جراحی همچنان الیگوری بوده و دچارکاهش هوشیاری و ادم ریه میشود. فشار خون بیمار 160/100 است کراتینین 5 دواوره 200 وسدیم 125 و پتاسیم 6.6 و اسیدوز متابولیک دارد. بیمار با تشخیص نارسایی حاد کلیه (نکروز حاد توبولی) نیاز به دیالیز حاد اورژانسی دارد.
- سوال: دستورات دیالیز حاد چگونه نوشته شود؟ •

# Indication of dialysis

#### Clinical:

- Pulmonary edema/ Desaturation
- Pericardial rub
- GI symptoms
- Altered Mental status
- Anasarca
- Bleeding tendency
- Anuria/ Oliguria
- Infection/sepsis

#### **Biochemical:**

- Hyperkalemia
- Metabolic Acidosis
- Intoxication:

ASA, Alcohol, Lithium

# Renal Replacement Therapy in AKI)

- Peritoneal dialysis (PD)
- 2. Intermittent Hemodialysis (IHD)
- 3. Slow Low-Efficiency Daily Dialysis (SLED)
- 4. Continuous Renal Replacement Therapy (CRRT)
  - · Slow Continuous Ultrafiltration (SCUF)
  - Continuous Venovenous Hemofiltration (CVVH)
  - Continuous Venovenous Hemodialysis (CVVHD)
  - Continuous Venovenous Diafiltration (CVVHDF)

# Acute Hemodialysis prescription DIALYSIS PRESCRIPTION

#### Components of the Dialysis Prescription

- Dialyzer (membrane, configuration, surface area)
- Time
- Blood flow rate
- Dialysate flow rate
- Ultra filtration rate
- Dialysate composition
- Dialysate temperature
- Anticoagulation

# Order HD prescription (initial treatment)

- ✓ Session length: Perform HD 2 hrs.
- ✓ BFR: 200 ml/min
- ✓ Dialyzer: Low flux
- ✓ Dialysate solution composition:
  - Na ..., K...., HCO3 ..., Ca..., Mg..., Dextrose....
- ✓ DFR : 500 ml/min
- ✓ Dialysis solution temp.: 36°c
- ✓ Fluid removal order: remove ... Lite.
- ✓ Anti-coagulant : heparinloading..,maintenance ...
  (หรือnon-heparin ตามความเหมาะสม)
- √ 50 % glucose 50-100 ml intra HD

# Acute vs Chronic Hemodialysis Prescription

- Initial t/t when predialysis BUN is high
  - □ ↓ dialysis session length
  - □ ↓ blood flow rate
- A urea reduction ratio of <40% should be targeted.</p>
- Blood flow rate of 250 mL/min for adults along with 2-hr t/t time
- If large amount of fluid (e.g., 4.0 L) to be removed
  - dialysis solution flow can initially be shut off
  - isolated ultrafiltration can be performed for 1-2 hours, removing 2-3 kg of fluid
- Only after that dialysis should be performed. Why?

## Composition of typical dialysis solution

| COMPONENT |          | meq/l    |
|-----------|----------|----------|
|           | Na+      | 135-145  |
|           | K+       | 0-4      |
|           | Ca ++    | 2.5-3.5  |
|           | Mg++     | 0.5-0.75 |
|           | Cl-      | 98-124   |
|           | Acetate  | 2-4      |
|           | Hco3-    | 30-40    |
|           | Dextrose | 11 g     |
|           | PH       | 7.1-7.3  |



## THE DIALYSIS PRESCRIPTION-Dialysate Composition



#### □ Potassium

- Dialysate K 1-3mEq/L is used in most patients
- Low K+ should be used with caution due to association between use of Low K+ dialysate with SCD

#### Calcium.

- Patients with hypocalcemia, positive intradialytic calcium balance may be desired for control of metabolic bone disease
- Standard dialysate calcium -2.5-3.0 mEq/L is used
- Dialysate calcium also affect hemodynamic stability during HD procedure

#### DIALYSIS PRESCRIPTION

- Temperature.
- Dialysate temperature is maintained between 36.5°C and 38°C at inlet of dialyzer
- Lower dialysate temperature may reduce intradialytic hypotension and also increase cardiac contractility, improve oxygenation,increase venous tone
- New accurate monitors allow isothermic HD
- Microbiological characteristics
- Medical Instrumentation standards

### Dialyser

- Dialyzers are classified as
- 1.Conventional-
- Has a membrane that is homogenous and permits effective small solute clearance, but its clearance of middle molecules is low
- Cellulose based and permit complement activation
- 2. High-flux. –
- Constructed with pores that permit passage of molecules exceeding 10,000 D or more with a clearance
- Significant binding of protein and peptides from the blood
- 3.High-efficiency-
- When the high-flux membrane is chemically modified, hydraulic permeability as well as the permeability to HMW substances is reduced, creating a high efficiency membrane

### DIALYSIS PRESCRIPTION-DIALYZER TYPE

- Capacity for solute clearance: Ideal dialyzer should have high clearance of small- and middle-molecular weight uremic toxins and
   Negligible loss of vital solutes
- Biocompatibility:
- □ Cost
- Low blood volume compartment
- UF coefficient (KUF)-determines quantity of pressure that must be exerted across dialysis membrane to generate a ultrafiltrate
- High-flux membranes are defined a having >UF coefficient 15 mL/h/mm
   Hg
- Acceptable reuse parameters, the fiber bundle volume must be >80% of the initial, UF rate must >20% of the manufacturer's stated value, and the dialyzer should not leak.



## DIALYSIS PRESCRIPTION: Dialysate flow /UF rate



#### Dialysate flow

- Practical upper limit of effective dialysate flow is twice blood flow rate, beyond which gain in solute removal is minimal
- High flow rates should be confined to blood flows >300 mL/min

#### UF rate prescription.

- Goal is to achieve estimated dry weight
- Tolerance determined by vascular refilling
- UF modeling may reduce intradialytic complication
- On-line monitoring of blood volume changes may help prescription

### Anticoagulation for Hemodialysis

- Interaction of plasma with the dialysis membrane produces activation of the clotting cascade- thrombosis – dysfunction
- Dialyzer thrombogenicity is determined by
- Dialysis membrane composition
- Rate of blood flow through dialyzer and UF rate
- Length, diameter, and composition of blood lines
- Most widely used anticoagulant for dialysis is heparin
- Monitor activated clotting time (ACT) /APTT
- Heparin administration usually ceases at least 1 h before the end of dialysis

| 11:39 <b>M 9</b>                              |                   |                       | ₩ all ■         |
|-----------------------------------------------|-------------------|-----------------------|-----------------|
| $\times$                                      | IHD               | CRRT                  | SLED 1          |
| Fluid shift                                   | Ultrafiltration   | Ultrafiltration       | Ultrafiltration |
| mechanism                                     |                   |                       |                 |
| Solute shift                                  | Diffusion         | Diffusion, con-       | Diffusion       |
| mechanism                                     |                   | vection, or both      |                 |
| Blood flow rate                               | $\geq$ 200 ml/min | < 200 ml/min          | 200 ml/min      |
| Dialysate                                     |                   |                       |                 |
| flow rate                                     | ≥500 ml/min       | 1 <i>7</i> -34 ml/min | 300 ml/min      |
| Duration                                      | 3-4 hours         | 24 hours/day          | 6-12 hours      |
| Advantages/sp                                 | ecial uses        |                       |                 |
| <ul> <li>Rapid fluid</li> </ul>               | <b>✓</b>          |                       |                 |
| removal                                       |                   |                       |                 |
| <ul> <li>Rapid solute</li> </ul>              | <b>✓</b>          |                       |                 |
| clearance                                     |                   |                       |                 |
| <ul> <li>Severe</li> </ul>                    | <b>✓</b>          |                       |                 |
| hyperkalemia                                  |                   |                       |                 |
| <ul> <li>Hemodynamic instability</li> </ul>   |                   | ✓                     | ✓               |
| <ul> <li>Better fluid co</li> </ul>           | ntrol             | ✓                     | ✓               |
| <ul> <li>High nutrition</li> </ul>            | al support        | ✓                     | ś               |
| <ul> <li>Removal of m molecular we</li> </ul> |                   | ✓                     |                 |

# Post-Dialysis care

- Monitor BP; report hypotension or hypertension
- Watch for bleeding
- Check weight and compare (weight loss should be close to fluid removal goal set during treatment)
- Document unusual findings
- Assess access site for bruit, thrill, exudate, signs of infection, bleeding
- Give missed meds, if indicated

#### INTRADIALYTIC COMPLICATIONS

- □ 1.Hypotension-Most common (incidence, 15% to 30%)
- 2.Muscle Cramps
- 3.Dialysis Disequilibrium Syndrome
- 4.Dialyzer Reactions First-use syndrome/ second-use syndrome
- 5.Arrhythmia
- 6.Cardiac arrest
- 7.Intradialytic Hemolysis
- 8.Hypoglycemia
- 9.Hemorrhage
- 10.Toxic water system treatment contaminantshemolysis/anemia/osteomalacia and encephalopathy/Fluoride bone disease and cardiac arrhythmia
- 11.Infectious complications

# Acute complication HHCCBNF

- Hypotension 25 to 55 %
- Cramps 5 to 20 %
- Nausea and vomiting 5 to 15 %
- Headache 5%
- Chest pain 2 to 5 %
- Back pain 2 to 5 %
- Itching 5 %
- Fever and chills Less than 1 %

# Disequilibrium Syndrome

- During or immediately after dialysis.
- Acute increase in brain water or acute changes in pH of CSF during dialysis.
- Minor symptoms: nausea, vomiting, dizziness, headache, blurred vision, restlessness, cramps, tremors.
- Major symptoms: confusion, psychosis, seizures, coma.

# در صورت وقوع چه مشكلاتی حین دیالیز لازم است دیالیز متوقف شود؟

1 - افت فشار خون غير قابل توجيه و پايدار عليرغم قطع اولترافيلتراسيون •

2- درد حاد قفسه سینه و تغییرات نوار قلب یا اریتمی

3-تب و لرز حين دياليز •

4- كاهش سطح هوشيارى •

5-آلودگی آب دیالیز •

6-واكنشهاى هموليتيك حين دياليز •

# SLEDD (slow low efficiency daily dialysis)

| TABLE 1 EXTENDED HEMODIALYSIS PRESCRIPTION MODE |                                                 |  |  |
|-------------------------------------------------|-------------------------------------------------|--|--|
| Duration                                        | 6-8 hours                                       |  |  |
| Blood flow                                      | 100-200 (ml/min)                                |  |  |
| Dialysate flow                                  | 200-300 (ml/min)                                |  |  |
| Ultrafiltration                                 | Variable (maximum around<br>250 ml/h) + profile |  |  |
| Sodium                                          | Fixed 145-150 mEq/L or profile                  |  |  |
| Dialysate temperature                           | 35°C                                            |  |  |
| Anticoagulation                                 | Unfractionated heparin<br>500-1000 UI/hour      |  |  |

# Case: Acute Hemodialysis

- اقای 50 ساله بدنبال مولتیپل تروما و پارگی طحال و خونریزی داخل شکمی با تابلوی شوک هیپوولمیک به اتاق عمل برده شده و اسپلنکتومی میشود و 4 واحد پک سل و 3 لیتر سرم نرمال سالین دریافت کرده است. آزمایشات روز اول کراتینین 1و هموگلوبین 6و پتاسیم 4 داشته و سایر ازمایشات نرمال است روز دوم پس از عمل الیگوری شده و کراتینین 2و پتاسیم 5 شده است. روز چهارم پس از جراحی همچنان الیگوری بوده و دچارکاهش هوشیاری و ادم ریه میشود. فشار خون بیمار 160/100 است کراتینین 5 دواوره 200 وسدیم 125 و پتاسیم 6.6 و اسیدوز متابولیک دارد. بیمار با تشخیص نارسایی حاد کلیه (نکروز حاد توبولی) نیاز به دیالیز حاد اورژانسی دارد.
- سوال: دستورات دیالیز حاد چگونه نوشته شود؟ •

